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Quasigraphite: Density functional theory based predictions of a structure and its properties
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Based on density-functional calculations, we propose a carbon-based nanostructure which we call quasi-
graphite phase. The quasigraphite phase resembles carbon nanotubes welded into planes, which are arranged
similar to layers in graphite. It demonstrates a strong stability with respect to temperatures and external strain.
The elastic and electronic properties of the proposed structure are discussed.
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Various kinds of carbon structures exist in nature or have
been synthesized in experiments.! The well-known structures
are diamond, which is the nature’s hardest material, and
graphite, which is very soft in shear even though the bonds
between atoms within the sheets are extremely strong. The
discovery of carbon nanotubes? and fullerenes® as well as
recent graphene studies has intensified the interest toward
carbon materials.

In particular, there has been growing interest in creating
fullerene based polymers as possible candidates for
superconductors,* strong and light materials, hydrogen stor-
age materials,>”’ quantum dots,*? and biological
applications.!®!! In this respect Cgy-based polymers have
been studied intensively.'>!3> However recent synthesis of a
broad variety of fullerene cages has made it also possible to
design various kinds of polymers with other kinds of
fullerenes as alternative building blocks.

Among different fullerenes, the smallest one, C,,, seems
very promising for polymer creation. Indeed, while carbon
atoms in C,, molecule exhibit sp? hybridization, as typical
for fullerenes in general, the extreme curvature of the cage
surface makes the dihedral angles between bonds more ap-
propriate to sp* hybridization. One should expect that for C,,
the change of the hybridization type, which is a prerequisite
for chemical bonding between fullerenes during polymeriza-
tion, is especially easy, and hence C,, should manifest ex-
treme reactivity and easily form compounds. However, so far
only one three-dimensional (3D) C,y-based polymer has
been experimentally produced.!*!> Based on the comparison
of computational and experimental Raman and IR spectra
Igbal et al.'* have shown that the best fit to the experimental
data is demonstrated by face-centered-cubic (fcc) Cy, struc-
ture, where C,, molecules are located in face-centered-cubic
lattice bound by two additional C atoms. According to com-
putational studies other stable 3D polymer structures might
exist, including various simple-cubic (sc), 1% fcc,'® and
body-centered-cubic (bec) (Refs. 16 and 17) phases.

Following this trend we have been studying the formation
of different C,y-based polymer structures. The equilibrium
configurations and energies of different polymer structures
are determined using the spin-polarized density-functional
theory (DFT) (Refs. 18 and 19) within the generalized gra-
dient approximation (GGA) implemented in VASP code.?*?!
In order to describe the carbon ion core electrons, the pro-
jector augmented wave (PAW) potential??>?3 is used. In order
to represent C, polymers, calculation supercells usually con-
tain 20 atoms. The supercell shapes are selected so that the
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PACS number(s): 61.48.—c, 61.43.Bn, 61.66.—f, 64.70.Nd

cell repetition due to periodic boundary condition provides
the desired overall polymer lattice symmetry. The relaxation
of atomic positions is performed with molecular statics
method. The kinetic-energy cutoff of 400 eV with 6 X6X 6
Brillouin-zone sampling is applied. We have checked that
these values provide the convergence of the supercell total
energy within 10 meV.

A typical simulation scheme involves the arrangement of
C,o molecules in a desirable lattice structure at sufficiently
large intermolecular separations, followed by graduate de-
crease in intermolecular separations (structure compression)
until the molecules become bound to each other and form
two- or three-dimensional structures. In this way, we have
systematically studied the most reasonable structures, which
can be created using 20 atom supercell, namely—sc, fcc,
bee, and hexagonal closed packed. In all considered cases the
polymer formation was found to require no activation barrier,
in agreement with the earlier findings of Okada et al.'” As a
result we have found several equilibrium C,y-based polymer
structures.?*

In order to test their stability with respect to the action of
compressive loads, both isotropic and anisotropic strains
were applied to the considered structures. In one of these
computational experiments, we have observed a pressure in-
duced phase transformation of one of the stable polymers to
a completely different structure, which we have named the
“quasigraphite phase” (QGP) (Fig. 1). The scheme of QGP
generation is shown in Fig. 2. According to the general
scheme described above, the fullerene cages are initially
packed in a simple-cubic lattice, facing each other with par-

FIG. 1. In the quasigraphite structure, small tubes are joined
together forming layers. Atoms are sp” hybridized except atoms
which join tubes together.
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FIG. 2. The pressure induced phase transformation of the
C,(-based layered cubic structure. Here, the distance means the size
of the supercell, which contains only one C,.

allel edges (the rightmost inset of Fig. 2). Gradual isotropic
compression of this system eventually results in the equilib-
rium layered sc polymer structure with the lattice parameter
of 6 A, as shown in the middle inset of Fig. 2. If, however,
the hydrostatic compression is continued, another phase
transformation takes place when the pressure reaches the
value of 30 GPa (see Fig. 2) and a high-pressure phase,
which is QGP, is formed. The activation barrier associated
with the transition is about 3 eV/fullerene.

The resulting structure, which is characterized by the co-
hesive energy of 8.91 eV/atom, is not only more energeti-
cally favorable than the intermediate sc structure but turned
out to have the largest cohesive energy among all the equi-
librium 3D polymers based on C, (see Table I and Ref. 24).
Note that the transition is induced exclusively by application
of pressure without any assistance of temperature (the latter
is always zero for the molecular static relaxation used here).

The structure of quasigraphite phase can be described as
an arrangement of nanotubes welded together in planar lay-
ers, which are, in turn, stacked in a graphitelike manner. The
atoms that provide nanotube “welding” manifest the sp* hy-
bridization while the others constituting the nanotubes have
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sp* hybridization. Correspondingly, the quasigraphite phase
is characterized by two different sets of bond lengths (Table
I): those corresponding to the diamondlike sp’-type bonds
(with the bond length of about 1.54 A) and those corre-
sponding to graphitelike sp? hybridized bonds (1.42 A).
Thus the quasigraphite phase consists of two-dimensional
layers of packed nanotubes while the layer arrangement and
interlayer separations are similar to those observed for indi-
vidual carbon sheets in graphite. The latter indicates that the
interaction between layers is, like in graphite, due mostly to
van der Waals (vdW) forces. Correspondingly, the interlayer
separation predicted by DFT should be taken with caution
because vdW interaction is known to be treated improperly
in this case. In order to improve the description of vdW
interaction, the obtained equilibrium QGP structure was re-
optimized using CPMD code,> which allows estimation of the
additive vdW contribution E 4, to the standard DFT energies
using an empirical damped dispersion force model?6-2”

Caﬁ R;J{,B 71\4
Evdw=2 j@(l_e’(p{_d(ﬁ%ﬁ) :|) . (1)
ij 0

ij

In this formula ngﬁ is the diatomic vdW force coefficient,
R§P is the sum of the vdW radii of two interacting atoms,
RZ‘-'B is the distance between atoms, and d is the damping
coefficient. This model ensures that bonded interactions are
not included since the effect of vdW correction drops to zero
when the distance between atoms is about 3 A. In the cur-
rent calculations we used the set of parameters appropriate
for this model, as obtained by Williams and Malhotra® using
Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr
(BLYP) functionals.

The application of vdW corrections resulted in the opti-
mized distance between QGP planes of 3.0 A (see Fig. 3).
For comparison, the same procedure that was repeated for
graphite predicted the graphite interlayer distance of 3.1 A.
This value differs from the experimental one, 3.35 A, by
less than 10%, giving a rough estimate of the accuracy of
interplane separation determination for QGP as well.

Next, we present the results of elastic and electronic prop-
erty calculations for the quasigraphite phase. In order to cal-

TABLE I. Energies and lattice parameters for QGP in comparison with well-known carbon structures. In
QGP lattice vector c is perpendicular to the layer. Energies are given without vdW energy taken into account.

E/atom E/atom* Bond Eengths

Structure (eV) (eV) Lattice vectors (A)

Diamond -9.10 -9.22 a=3.573 A 1.54

Graphite -9.25 -9.24 a=b=246 A, c=62 A 1.42

Cy fullerene -8.07 -8.01 1.45

Cy sC -8.36 a=6.06 A, b=5.86 A, c=6.48 A 1.38, 1.42, 1.33, 1.48

1.52, 1.53, 1.55, 1.66

Cyy fec -8.79 a;=[4.31,454,0.32] A 1.34, 1.50, 1.53, 1.54
a,=[0.32,4.54,4.31] A 1.56, 1.57
a;=[3.98,0.65,3.98] A

C,y QGP -8.91 a=491 A, b=536 A, c=6.0 A 1.41,1.46,1.51,1.55

4Reference 16.
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FIG. 3. The dependence of the binding energy between layers
for 20 atom supercell for quasigraphite phase and graphite vs the

distance between layers when van der Waals correction is taken into
account.

culate elastic properties after structural optimization of QGP,
small distortions to its equilibrium lattice vectors were ap-
plied. Then from the distortions and corresponding energies,
the elastic constants were deduced. For this purpose the pro-
cedure described in the paper by Ravindran et al.?® was used.

The bulk modulus was calculated using the Murnaghan
equation of state”

BV Vo (Vo)®
—— 1=+ 2] —1|+E,
B'(B'-1) % %

(2)

E(V)=

where V|, is equilibrium volume, B’ is pressure derivative of
the bulk modulus, and E, is the equilibrium energy. The
calculated elastic constants and bulk modulus are presented
in Table II. The elastic constants ¢;; and ¢33 for QGP, graph-
ite, and carbon nanotubes are found to be very similar, as
could be expected since their geometries are similar in the
strain direction. The difference between calculated values of
the bulk modulus and experimental values is small, less than
3% for solids and 10% for layered materials.
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FIG. 4. In the DOS plot, filled curve is the total DOS for QGP

while I'=X and Y-T sections are plotted separately. For clarity
DOS curves are scaled.

The calculations of electronic structure show that QGP
structure manifests metallic properties along the axis of the
tube and no metallic conductivity in in-plane (I'-X) and
perpendicular (Y-1I") directions [see the band structure and
electronic density of states (DOS) shown in Fig. 4]. This
behavior is to some extent similar to that for graphite. How-
ever, in contrast to the graphite electronic structure, for QGP
there are two well localized states in (I'-X) and (Y-TI') di-
rections seen in the band gap. Moreover, in order to excite an
electron from the lowest of these localized states, which is
fully occupied, to the next empty level, one needs only 0.69
and 0.40 eV in (I'-X) and (Y-I') directions, respectively.
This electronic band property can possibly be used in appli-
cations which require photons with high frequency.

To examine the stability of the QGP structure, we have
performed molecular dynamic simulations using CPMD (Ref.
25) code with the Parrinello-Rahman?®' constant-temperature
constant pressure (NPT) technique and the GGA. The size of
the supercell for the stability studies was 160 atoms and
Brillouin-zone sampling was done with the I" point.

Both isotropic and anisotropic strains were considered. It
is found that the QGP structure endures pressures up to 50

TABLE II. Elastic properties of QGP in comparison with the well-known carbon structures.

€1 c» €33 Caq C66 2 B
Structure Method (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
Diamond this study 1085 569 140 447
experimental® 1079 575 124 442
Graphite this study 1058 49 39
experimental® 1060 36 34
Nanotube empirical® 1060 40 19
Cao QGP this study 1050 636 49 340 90 50
“Reference 34.

PReference 35.
‘Reference 36.
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FIG. 5. Phonon dispersion relations for QGP show absence of
zero-mode components which promotes stability of the structure.

GPa without any phase transformations. At higher pressures,
however, a phase transformation may occur. In particular, a
shock induced phase transformation takes place when the
pressure is rapidly increased to values higher than 50 GPa. In
this case bonds between quasigraphite sheets are formed and
the structure transforms to the phase which can be consid-
ered as amorphous diamond. The structures which are ener-
getically less favorable such as cubic structures undergo
phase transformations much easier than QGP structure. How-
ever even they are highly resistant against external strains
and high temperatures, remaining stable up to 20 GPa and
1000 K.

The stability of the QGP structure is also confirmed by the
absence of the zero-mode components in the calculated
phonon-dispersion spectrum (Fig. 5), which was calculated
using finite difference approach implemented in ABINIT code
within local-density approximation (LDA). In order to esti-
mate the sensitivity of calculated frequencies to the choice of
the exchange-correlation approximation and the code used,
the phonon modes were calculated using both LDA and
GGA, and VASP. In all tested cases, GGA gives approxi-
mately 50 cm™! lower frequencies than LDA, which corre-
lates with the known fact that LDA overestimates inter-
atomic binding, whereas GGA underestimates it. With LDA,
VASP gives the same results as ABINIT.

Since vibrational information is very sensitive to the spa-
tial disposition of chemical bonds in an atomic structure,
Raman spectroscopy provides a fingerprint by which the
studied structure can be identified. Therefore we have calcu-
lated Raman spectra for QGP which can be used by experi-
mentalists for its identification if synthesized. Raman inten-
sities are calculated within LDA approximation using ABINIT.
The dynamical matrices are calculated with a 4 X4 X4 grid
of special high-symmetry ¢ points and 680 eV kinetic-energy
cutoff for the plane waves. ABINIT uses density-functional
perturbation theory and linear-response functions to calculate
intensities. Linear response calculations give Raman suscep-
tibility tensor R, whose elements are derivatives of polariz-
ability. The intensity of a phonon mode is proportional to the
largest eigenvalue of R*R. A mode is Raman active only if
the motion occurs with a changing polarizability. At some
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FIG. 6. Phonon modes and Raman spectra for QGP calculated
with ABINIT and LDA. The most intense peaks corresponding to
Raman-active modes are located at frequencies 748, 964, 1203, and
1510 cm™!, these peaks are distinctive features of QGP and are not
seen in any other C,, polymer structure studied so far.

distance Ar away from the equilibrium structure, the polar-
ization « is given by

Jda
a=a0+<—>Ar, (3)
ar

where the term ';—'f is the change in polarizability with change
in nuclear position. If derivate is zero, no Raman scattering
occurs. Raman spectra for QGP are presented in Fig. 6.
Raman-active modes with noticeable intensity are located at
379, 454, 748, 964, 1008, 1203, 1372, 1408, and 1510 cm™".
Experimental Raman spectra for graphite demonstrate in-
tense peak at 1580 cm™' (G band) and defect band at
1355 cm™! (D band), which is ascribed to defects in carbon
aromatic structure.’> In QGP the Raman spectra peak at
1510 ecm™! corresponds to G band of graphite but peaks at
748 and 964 cm™! have larger intensity compared to peak at
1510 cm™!. These peaks are fingerprints that are lacking in
other C,, polymer structures. There are also small peaks at
372 and 1408 cm™! close to D band in graphite.

Summing up, in this paper we propose a carbon structure
that we called quasigraphite. The generated structure is re-
producible by different ab initio computational methods and
codes. Moreover it is very stable against external strain and
high temperatures. The high stability of the structure leads us
to the conclusion that QGP can be synthesized experimen-
tally. Electronic density of states, band structure, and elastic
properties has been calculated. Phonon modes manifest sta-
bility of the structure and calculated Raman spectra can be
used for structure identification in experimental research. We
suggest that one of the recipes can be its generation from the
layered cubic structure by the slow external isotropic loading
by 30-46 GPa at low temperatures. Following the similari-
ties between the quasigraphite phase and both carbon nano-
tubes and grapheme, one could expect a number of promis-
ing properties of the structure.
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